Package: geodl 0.2.0
geodl: Geospatial Semantic Segmentation with Torch and Terra
Provides tools for semantic segmentation of geospatial data using convolutional neural network-based deep learning. Utility functions allow for creating masks, image chips, data frames listing image chips in a directory, and DataSets for use within DataLoaders. Additional functions are provided to serve as checks during the data preparation and training process. A UNet architecture can be defined with 4 blocks in the encoder, a bottleneck block, and 4 blocks in the decoder. The UNet can accept a variable number of input channels, and the user can define the number of feature maps produced in each encoder and decoder block and the bottleneck. Users can also choose to (1) replace all rectified linear unit (ReLU) activation functions with leaky ReLU or swish, (2) implement attention gates along the skip connections, (3) implement squeeze and excitation modules within the encoder blocks, (4) add residual connections within all blocks, (5) replace the bottleneck with a modified atrous spatial pyramid pooling (ASPP) module, and/or (6) implement deep supervision using predictions generated at each stage in the decoder. A unified focal loss framework is implemented after Yeung et al. (2022) <https://doi.org/10.1016/j.compmedimag.2021.102026>. We have also implemented assessment metrics using the 'luz' package including F1-score, recall, and precision. Trained models can be used to predict to spatial data without the need to generate chips from larger spatial extents. Functions are available for performing accuracy assessment. The package relies on 'torch' for implementing deep learning, which does not require the installation of a 'Python' environment. Raster geospatial data are handled with 'terra'. Models can be trained using a Compute Unified Device Architecture (CUDA)-enabled graphics processing unit (GPU); however, multi-GPU training is not supported by 'torch' in 'R'.
Authors:
geodl_0.2.0.tar.gz
geodl_0.2.0.zip(r-4.5)geodl_0.2.0.zip(r-4.4)geodl_0.2.0.zip(r-4.3)
geodl_0.2.0.tgz(r-4.4-any)geodl_0.2.0.tgz(r-4.3-any)
geodl_0.2.0.tar.gz(r-4.5-noble)geodl_0.2.0.tar.gz(r-4.4-noble)
geodl_0.2.0.tgz(r-4.4-emscripten)geodl_0.2.0.tgz(r-4.3-emscripten)
geodl.pdf |geodl.html✨
geodl/json (API)
NEWS
# Install 'geodl' in R: |
install.packages('geodl', repos = c('https://maxwell-geospatial.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/maxwell-geospatial/geodl/issues
Last updated 4 months agofrom:8455b113d2. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win | NOTE | Oct 25 2024 |
R-4.5-linux | NOTE | Oct 25 2024 |
R-4.4-win | NOTE | Oct 25 2024 |
R-4.4-mac | NOTE | Oct 25 2024 |
R-4.3-win | NOTE | Oct 25 2024 |
R-4.3-mac | NOTE | Oct 25 2024 |
Exports:assessDLassessPntsassessRasterdefineMobileUNetdefineSegDataSetdefineUNetdefineUnifiedFocalLossdefineUnifiedFocalLossDSdescribeBatchdescribeChipsluz_metric_f1scoreluz_metric_overall_accuracyluz_metric_precisionluz_metric_recallmakeChipsmakeChipsDFmakeChipsMultiClassmakeMasksmakeTerrainDerivativespredictSpatialviewBatchviewBatchPredsviewChips
Dependencies:abindbase64encbitbit64bslibcachemcallrclicliprcommonmarkcorocpp11crayondescdigestdplyrellipsisevaluatefansifastmapfontawesomefsgenericsglueGPArotationhighrhmshtmltoolshtmlwidgetshttpuvjpegjquerylibjsonliteknitrlaterlatticelifecycleluzmagrittrmemoisemimemnormtMultiscaleDTMnlmepillarpkgconfigpngprettyunitsprocessxprogresspromisespspsychpurrrR6rappdirsrasterRcppRcppArmadilloreadrrglrlangrmarkdownsafetensorssassshinysourcetoolsspterratibbletidyselecttinytextorchtorchvisiontzdbutf8vctrsvroomwithrxfunxtableyamlzeallot
DataSets and DataLoaders
Rendered fromcreateDataSetDataLoader.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Create Raster Masks
Rendered fromcreateMasks.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Multiclass Classification Workflow (Landcover.ai)
Rendered fromlcaiDemo.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Create Image Chips
Rendered frommakeChips.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Assessment Metrics for Use in Training Loop
Rendered frommetricsDemo.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-18
Started: 2024-07-18
Model Assessment
Rendered frommodelAssessment.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-18
Started: 2024-07-18
Predict Spatial Data
Rendered fromspatialPredictionDemo.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Create Terrain Derivatives
Rendered fromterrainDerDemo.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Binary Classification Workflow (topoDL)
Rendered fromtopoDLDemo.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Unified Focal Loss Framework
Rendered fromunifiedFocalLossDemo.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2024-07-31
Started: 2024-07-18
Readme and manuals
Help Manual
Help page | Topics |
---|---|
assessDL | assessDL |
assessPnts | assessPnts |
assessRaster | assessRaster |
defineMobileUNet | defineMobileUNet |
defineSegDataSet | defineSegDataSet |
defineUNet | defineUNet |
defineUnifiedFocalLoss | defineUnifiedFocalLoss |
defineUnifiedFocalLossDS | defineUnifiedFocalLossDS |
describeBatch | describeBatch |
describeChips | describeChips |
luz_metric_f1score | luz_metric_f1score |
luz_metric_overall_accuracy | luz_metric_overall_accuracy |
luz_metric_precision | luz_metric_precision |
luz_metric_recall | luz_metric_recall |
makeChips | makeChips |
makeChipsDF | makeChipsDF |
makeChipsMultiClass | makeChipsMultiClass |
makeMasks | makeMasks |
makeTerrainDerivatives | makeTerrainDerivatives |
predictSpatial | predictSpatial |
viewBatch | viewBatch |
viewBatchPreds | viewBatchPreds |
viewChips | viewChips |